時(shí)間:2020-02-17
作者:易科泰
點(diǎn)擊量:
簡介:
FL6000雙調(diào)制葉綠素?zé)晒鉁y量儀
FL6000雙調(diào)制葉綠素?zé)晒鈨x是FL3500雙調(diào)制葉綠素?zé)晒鈨x的最新升級(jí)版,專門用于對(duì)藍(lán)綠藻或綠藻等微藻,葉綠體或類囊體懸浮物進(jìn)行光合作用深入機(jī)理研究的強(qiáng)大科研工具。儀器具備雙通道測量控制,可控制測量樣品的溫度,并配備單翻轉(zhuǎn)光(STF),內(nèi)置多種可用戶自行修改的測量程序,可進(jìn)行目前國際上對(duì)于葉綠素?zé)晒獾母鞣N深入機(jī)理研究。其核心結(jié)構(gòu)是包含了一個(gè)懸浮液標(biāo)準(zhǔn)樣品杯的光學(xué)測量頭,內(nèi)置3組LED光源和1個(gè)1MHz/16位 AD 轉(zhuǎn)換的PIN二極管信號(hào)檢測器。AD轉(zhuǎn)換的增益和積分時(shí)間可以通過軟件控制。檢測器測量葉綠素?zé)晒庑盘?hào)的時(shí)間分辨率可高達(dá)4 μs(快速版為1μs)。
應(yīng)用領(lǐng)域:
典型樣品:
功能特點(diǎn):
技術(shù)參數(shù):
1. 實(shí)驗(yàn)程序:Kautsky葉綠素?zé)晒庹T導(dǎo)效應(yīng)測量;PAM(脈沖調(diào)制)熒光淬滅動(dòng)力學(xué)測量;OJIP快速熒光動(dòng)力學(xué)測量;QA–再氧化動(dòng)力學(xué);S狀態(tài)轉(zhuǎn)換;快速葉綠素?zé)晒庹T導(dǎo)
2. 熒光參數(shù):
QA–再氧化動(dòng)力學(xué)曲線和S-state test熒光衰減曲線(Li,2010)
3. 時(shí)間分辨率(采樣頻率):高靈敏度檢測器,標(biāo)準(zhǔn)版時(shí)間分辨率為4μs,快速版為1μs
4. 最低檢測極限:標(biāo)準(zhǔn)版100ng Chla/L,快速版1μg Chla/L
5. 控制單元:配備彩色觸摸顯示屏,可實(shí)時(shí)查看熒光曲線圖
6. 測量室:
7. 定制測量室(選配):可分別定制測量光、飽和光閃和光化學(xué)光顏色(藍(lán)色、青色、琥珀色等)以及檢測波段(ChlA,ChlB)
8. 遠(yuǎn)紅外光源(選配):用于測量F0',波長730nm
9. 氧氣測量模塊(選配):測量藻類的氧氣釋放
10. 溫度控制(選配):TR 6000溫度調(diào)節(jié)器,控溫范圍5–60℃,精確度0.1℃
11. 電磁攪拌(選配):用于樣品混勻,防止樣品沉淀,可手動(dòng)調(diào)速或軟件自動(dòng)控制
12. 通訊接口:RS232串口/USB
13. FluorWin軟件:定義或創(chuàng)建實(shí)驗(yàn)方案、光源控制設(shè)置、數(shù)據(jù)輸出、分析處理和圖表顯示
典型應(yīng)用:
1. 中科院水生生物所王強(qiáng)研究員使用FL3500葉綠素?zé)晒鈨x(FL6000之前型號(hào))和TL植物熱釋光系統(tǒng)證明亞硝酸鹽脅迫首先影響Synechocystis sp. PCC 6803 PSII受體側(cè)(Zhan X, et al, 2017)。這種光合作用深入機(jī)理的研究經(jīng)常需要這兩種儀器來配合完成。
2.中科院新疆生態(tài)與地理研究所潘響亮研究員及其課題組使用FL3500葉綠素?zé)晒鈨x(FL6000之前型號(hào))深入開展了環(huán)境中重金屬、鹽分、有毒化合物、除草劑、殺蟲劑、抗生素等各種有害物質(zhì)對(duì)藻類的毒理研究。通過FL3500獨(dú)有的高分辨率OJIP快速熒光動(dòng)力學(xué)測量、QA–再氧化動(dòng)力學(xué)、S狀態(tài)轉(zhuǎn)換等葉綠素?zé)晒鉁y量程序,全面揭示了不同濃度與處理時(shí)間對(duì)藻類光合系統(tǒng)造成損傷的毒理機(jī)制及其生態(tài)影響。目前,潘響亮課題組已經(jīng)使用FL3500(FL6000之前型號(hào))在國際SCI期刊與國內(nèi)核心期刊上發(fā)表了二十余篇高水平文章。
產(chǎn)地:捷克
參考文獻(xiàn):
1. Manaa A, et al. 2019. Salinity tolerance of quinoa (Chenopodium quinoa Willd) as assessed by chloroplast ultrastructure and photosynthetic performance. Environmental and Experimental Botany 162: 103-114
2. Yu Z, et al. 2019. Sensitivity of Chlamydomonas reinhardtii to cadmium stress is associated with phototaxis. Environmental Science: Processes & Impacts 21: 1011-1020
3. Liang Y, et al. 2019. Molecular mechanisms of temperature acclimation and adaptation in marine diatoms. The ISME journal, DOI: 10.1038/s41396-019-0441-9
4. Orfanidis S, et al. 2019. Solving Nuisance Cyanobacteria Eutrophication Through Biotechnology. Applied Sciences 9(12): 2566
5. Sicora C I, et al. 2019. Regulation of PSII function in Cyanothece sp. ATCC 51142 during a light–dark cycle. Photosynthesis Research 139(1–3): 461–473
6. Smythers A L, et al. 2019. Characterizing the effect of Poast on Chlorella vulgaris, a non-target organism. Chemosphere 219: 704-712
7. Albanese P, et al. 2018. Thylakoid proteome modulation in pea plants grown at different irradiances: quantitative proteomic profiling in a non‐model organism aided by transcriptomic data integration. The Plant Journal 96(4): 786-800
8. Antal T, Konyukhov I, Volgusheva A, et al. 2018. Chlorophyll fluorescence induction and relaxation system for the continuous monitoring of photosynthetic capacity in photobioreactors. Physiol Plantarum. DOI: 10.1111/ppl.12693
9. Antal T K, Maslakov A, Yakovleva O V, et al. 2018.Simulation of chlorophyll fluorescence rise and decay kinetics, and P700-related absorbance changes by using a rule-based kinetic Monte-Carlo method. Photosynthesis Research. DOI:10.1007/s11120-018-0564-2
10.Biswas S, Eaton-Rye J J, et al. 2018. PsbY is required for prevention of photodamage to photosystem II in a PsbM-lacking mutant of Synechocystis sp. PCC 6803. Photosynthetica, 56(1), 200–209.
11.Bonisteel E M, et al. 2018. Strain specific differences in rates of Photosystem II repair in picocyanobacteria correlate to differences in FtsH protein levels and isoform expression patterns. PLoS ONE 13(12): e0209115.
12.Fang X, et al. 2018. Transcriptomic responses of the marine cyanobacterium Prochlorococcus to viral lysis products. Environmental Microbiology, doi: 10.1101/394122.
13.Kuthanová Trsková E, Belgio E, Yeates A M, et al. 2018. Antenna proton sensitivity determines photosynthetic light harvesting strategy, Journal of Experimental Botany 69(18): 4483-4493